Chem. Ber. 101, 829-838 (1968)

Rolf Huisgen, Rudolf Grashey 1) und Hans Gotthardt 2)

1.3-Dipolare Cycloadditionen, XXXVI³⁾

Pyrazole aus Sydnonen und $\alpha.\beta$ -ungesättigten Nitrilen oder Carbonylverbindungen

Aus dem Institut für Organische Chemie der Universität München (Eingegangen am 14. September 1967)

1

Acrylnitril, Methacrylnitril und Crotonitril reagieren mit Sydnonen unter Abspaltung von CO_2 und Blausäure zu substituierten Pyrazolen bzw. von CO_2 und Wasserstoff zu 4-Cyanpyrazolen, je nach Additionsrichtung. Die vermutete Δ^4 -Pyrazolin-Zwischenstufe läßt sich in situ mit Chloranil dehydrieren. Beim Addukt des Fumarsäure-dimethylesters wird die Aromatisierung durch Eliminierung von CO_2 und Methylformiat erzwungen. Zimtester und Benzalaceton bilden Pyrazole unter Wasserstoffabgabe, während beim *trans*-Dibenzoyläthylen-Addukt eine formale Benzaldehyd-Abspaltung stattfindet.

, j

Die Cycloadditionen der Sydnone an Alkine führen unter Kohlendioxid-Abgabe zu Pyrazolen⁴⁾. Alkene reagieren nach ähnlichem Schema; die beim CO_2 -Verlust entstehenden cyclischen Azomethin-imine stabilisieren sich zu Δ^2 -Pyrazolinen³⁾. In zahlreichen Fällen erreicht man nun auch von olefinischen Dipolarophilen aus die Stufe des Pyrazols. Die Aromatisierung wird dabei durch teilweise recht unerwartete Eliminierungen erzwungen.

A. Acrylnitril als Dipolarophil

Wir hatten einige Reaktionen ausgeführt⁵⁾, bevor wir auf die parallel laufenden Arbeiten von *Vasil'eva*, *Yashunskii* und *Shchukina*^{6,7)} aufmerksam wurden. Bei der Reaktion des Acrylnitrils mit *N*-Phenyl-, *N*-Methyl- oder *N*-Äthyl-sydnon gelangten die russ. Autoren zu 78% 1-Phenyl-, 65% 1-Methyl- bzw. 71% 1-Äthyl-pyrazol.

Wir erhielten aus N-Phenyl- (1) und N-Benzyl-sydnon (2) in siedendem Acrylnitril 80% 1-Phenyl- (5) bzw. 81% 1-Benzyl-pyrazol (6). Der Aromatisierung unter Blausäure-Eliminierung ließ sich mit einer solchen durch Dehydrierung Konkurrenz bieten. Als wir die Umsetzung von 1 mit Acrylnitril in Toluol bei 80° in Gegenwart von Chloranil vornahmen, isolierten wir 84% 1-Phenyl-3-cyan-pyrazol (9). Die al-

¹⁾ Versuche R. Grashey, München 1960/61.

²⁾ Aus der Dissertat, H. Gotthardt, Univ. München 1963.

³⁾ XXXV. Mitteil.: H. Gotthardt und R. Huisgen, Chem. Ber. 101, 552 (1968).

⁴⁾ R. Huisgen, H. Gotthardt und R. Grashey, Chem. Ber. 101, 536 (1968).

⁵⁾ Vorläuf. Mitteil.: R. Huisgen, H. Gotthardt und R. Grashey, Angew. Chem. 74, 30 (1962); Angew. Chem. internat. Edit. 1, 49 (1962).

⁶⁾ V. F. Vasil'eva, V. G. Yashunskii und M. N. Shchukina, J. gen. Chem. USSR 31, 1501 (1961); Engl. Translation (Consult. Bureau, New York) 31, 1390 (1961).

⁷⁾ V. F. Vasil'eva, V. G. Yashunskii und M. N. Shchukina, J. gen. Chem. USSR 33, 3706 (1963); Engl. Transl. (Consult. Bureau, New York) 33, 3638 (1963).

kalische Hydrolyse zur bekannten 1-Phenyl-pyrazol-carbonsäure-(3)⁴⁾ bewies die Stellung der Nitrilfunktion und gab über die Richtung der primären Cycloaddition Auskunft.

$$R - N + CH \\ CN + CN \\ R - N + CN \\ R$$

Welche Stufe geht in die Chloranil-Dehydrierung ein? Das Δ^4 -Pyrazolin 7 bietet günstige strukturelle Voraussetzungen, aber auch die Azomethin-imin-Zwischenstufe 8 ist möglich. Diese Zwischenstufe wurde in der vorangegangenen Arbeit³⁾ als für die Δ^2 -Pyrazolin-Bildung verantwortlich nachgewiesen; in einem geeigneten System konnte der neue 1.3-Dipol gemäß 8 durch Cycloaddition abgefangen werden.

Würde sich die Zwischenstufe 8 in der gewohnten Weise 3) zum Δ^2 -Pyrazolin 4 isomerisieren, wäre eine HCN-Abspaltung nicht mehr möglich oder nötig. Aus noch nicht bekannten Gründen scheint das cyclische Azomethin-imin 8 eine zu 7 führende Protonenverschiebung (von der 4- in die 2-Stellung) vor der üblichen von der 3- in die 5-Position zu bevorzugen. Das Δ^4 -Pyrazolin kann leicht eine β -Eliminierung von Blausäure zu 5 bzw. 6 erleiden.

Die russischen Autoren⁷⁾ nehmen übrigens das Δ^2 -Pyrazolin 4 als Zwischenstufe der Pyrazol-Bildung an. Sie verweisen auf eine Beobachtung von v. Auwers und Ungemach⁸⁾, die bei der Destillation des Produkts aus Zimtnitril und Diazomethan 1-Phenyl-pyrazol erhielten. Auch hier scheint uns die Natur der Zwischenstufen ungesichert. Gegen das 3-Cyan- Δ^2 -pyrazolin 4 als Zwischenstufe spricht u. a. der gleichartige Ablauf mit Methacrylnitril (S. 831); hier ist ein Δ^2 -Pyrazolin nicht mehr denkbar.

Bei der Einwirkung von Acrylnitril auf *C-Methyl-N-phenyl-sydnon* (10) erhielten die russischen Forscher⁷⁾ 20% 5-Methyl-1-phenyl-pyrazol (14) und nach alkal. Hydrolyse der Mutterlauge 32% 5-Methyl-1-phenyl-pyrazol-carbonsäure-(4). Bei der Trennung des Produkts durch fraktionierte Kristallisation gelangten wir zu 45% 14 und 16% 5-Methyl-1-phenyl-4-cyan-pyrazol (15). Die Konstitution ergab sich aus der Hydrolyse des Nitrils zur bekannten 4-Carbonsäure.

⁸⁾ K. v. Auwers und O. Ungemach, Ber. dtsch. chem. Ges. 66, 1198 (1933).

Eine Komplikation bietet hier das Beschreiten zweier Additionsrichtungen. Schon bei Cycloadditionen an Phenylacetylen und Propiolsäure-methylester⁴⁾ fanden wir für C-Methyl-N-phenyl-sydnon (10) die Orientierung, die den Substituenten in die Pyrazol-3-Stellung bringt, weniger streng erfüllt als für N-Phenyl-sydnon (1). Macht man nun — nicht ohne Willkür — die Δ^4 -Pyrazoline 11 und 12 für die Produktbildung verantwortlich, dann stabilisiert sich 11 durch HCN-Abgabe, während sich 12 unter Wasserstoff-Abspaltung aromatisiert. Als H-Akzeptoren kommen das Sydnon, die intermediären Azomethin-imine gemäß 8 oder auch die Δ^4 -Pyrazoline 11 und 12 in Betracht. Daß das 5-Methyl-1-phenyl-pyrazol (14) aus einem 3-Cyan-pyrazolin 11 hervorgeht, wurde wiederum mit einem Cycloadditionsversuch in Gegenwart von Chloranil bewiesen. Das zu 42% isolierte Nitrilgemisch enthielt 13 und 15 laut gaschromatograph. Analyse im 21: 79-Verhältnis. Dieses Verhältnis reflektiert angesichts der mäßigen Ausbeute wohl nicht dasjenige, in dem die Zwischenstufen 11 und 12 auftreten.

B. Methacrylnitril, Crotonitril

Vasil'eva und Mitarbb.6,7) setzten N-Phenyl- und N-Methyl-sydnon mit Methacrylnitril zu 56% 3-Methyl-I-phenyl- (17) bzw. 57% 1.3-Dimethyl-pyrazol um. Wir arbeiteten das Produkt aus 1 bzw. 10 und siedendem Methacrylnitril durch Destillation auf und isolierten 96% 17 bzw. 88% 3.5-Dimethyl-I-phenyl-pyrazol (18).

Der Ablauf entspricht also völlig dem mit 1 und Acrylnitril beobachteten. Die Umsetzung des Methacrylnitrils mit C-Methyl-N-phenyl-sydnon (10) ist sogar richtungsspezifischer als die des Acrylnitrils. Das quartäre C-Atom in 3-Stellung macht die Bildung eines Δ^2 -Pyrazolins unmöglich. Wenn überhaupt ein Pyrazolin in die HCN-Abspaltung eintritt, muß es die Δ^4 -Form 16 sein⁹).

⁹⁾ Die Bezeichnungen Δ3- und Δ4-Pyrazoline ermangeln der Eindeutigkeit. Die Numerierung wird hier und im folgenden derjenigen des bei der Aromatisierung entstehenden Pyrazols angepaßt.

Als Produkt der Reaktion von N-Phenyl-sydnon (1) mit Crotonitril erhielten die russischen Autoren⁶) 22% 4-Methyl-1-phenyl-pyrazol (19). Wir isolierten 44% 19 und daneben 33% 3-Methyl-1-phenyl-4-cyan-pyrazol (21); die Ausbeuten wurden durch quantitat. IR-Analyse des Hochvak.-Destillats ermittelt. Das Pyrazol 19 gab bei der Oxydation die bekannte Carbonsäure 20. Die alkal. Verseifung des Nitrils 21 führte zur 3-Methyl-1-phenyl-pyrazol-carbonsäure-(4) (22), strukturell gesichert durch die Decarboxylierung zu 17.

$$C_6H_5-N_NH$$
 $C_6H_5-N_NH$
 $C_6H_5-N_NH$
 $C_6H_5-N_NH$
 $C_6H_5-N_NH$
 C_6H_3
 $C_6H_5-N_NH$
 C_6H_3
 $C_6H_5-N_NH$
 $C_6H_5-N_NH$

Es kommen also beide Additionsrichtungen des ungesättigten Nitrils zum Zug. Den Δ^4 -Pyrazolinen 11 und 12 entsprechende Zwischenstufen erleiden auch hier HCN- bzw. H₂-Eliminierung.

C. Fumarsäureester

In einer schönen Untersuchung klärten Vasil'eva, Yashunskii und $Shchukina^{10}$ die Produkte der Einwirkung von Acrylsäure-methylester auf 1. Nebeneinander traten 1-Phenyl- Δ^2 -pyrazolin-carbonester-(3) und 1-Phenyl-pyrazol-carbonester-(4) auf; beide Additionsrichtungen wurden beschritten. Aus N-Methyl- und N-Äthyl-sydnon wurde nur Δ^2 -Pyrazolin-carbonester-(3) erhalten Δ^2 -Pyrazolin-carbonester-(3) erhalten Δ^2 -Pyrazolin-carbonester-(3) erhalten Δ^2 -Pyrazolin-carbonester-(3) erhalten

Ein völlig neuer Weg der Aromatisierung begegnete uns bei der Umsetzung des N-Phenyl-sydnons mit Fumarsäure-dimethylester⁵⁾. Die Reaktion in Xylol bei 110° ergab unter CO₂-Abspaltung 60% 1-Phenyl-pyrazol-carbonsäure-(4)-methylester (26). Es wurde also Ameisensäure-methylester, der sich IR-analytisch nachweisen ließ, eliminiert. Maleinsäure-dimethylester erbrachte 35% des gleichen Esters 26.

Dem Azomethin-imin 23, das bei der CO_2 -Abgabe aus dem Primäraddukt entsteht, ist anscheinend auch hier der Weg zum Δ^2 -Pyrazolin versperrt. Das Δ^4 -Pyrazolin 24

¹⁰⁾ V. F. Vasil'eva, V. G. Yashunskii und M. N. Shchukina, J. gen. Chem. USSR 32, 1446 (1962); Engl. Transl. (Consult. Bureau, New. York) 32, 1434 (1962).

¹¹⁾ V. F. Vasil'eva und V. G. Yashunskii, J. gen. Chem. USSR 32, 2888 (1962); Engl. Transl. (Consult. Bureau, New York) 32, 2845 (1962).

ist eine plausible Zwischenstufe für die Aromatisierung unter Formiat-Abspaltung. Die Chloranil-Dehydrierung in situ bewährte sich auch hier. 45% 1-Phenyl-pyrazoldicarbonsäure-(3.4)-dimethylester (25) waren das Resultat; 25 ist als Addukt von 1 an Acetylendicarbonsäureester bekannt⁴⁾.

Der Mechanismus der Formiat-Ablösung aus 24 ist unklar. Wir unterwarfen *Fumarsäure-diphenylester* der Reaktion mit 1 in siedendem Xylol und isolierten neben 27 anstelle des Ameisensäure-phenylesters 72 % Phenol und 97 % Kohlenoxid. Zwar ist ein Zerfall des Phenyl-formiats in diese Produkte bekannt ¹²⁾, jedoch ist ein vollständiger Ablauf unter unseren Bedingungen unwahrscheinlich. Eine Fragmentierung des Δ4-Pyrazolins über den cyclischen Übergangszustand 28 ist denkbar.

Die Umsetzung von 1 mit *Mesaconsäure-dimethylester* erforderte 170°. Zu 51% fiel der Ester 29 an, dessen Konstitution durch Überführung in 3-Methyl-1-phenyl-pyrazol (17) geklärt wurde. Der anscheinend eindeutigen Orientierung folgte wiederum die Methylformiat-Abspaltung.

D. Zimtsäureester und einige α.β-ungesättigte Ketone

Aus der Umsetzung von 1 mit Zimtsäure-äthylester bei 160° isolierten wir als einziges Reinprodukt 28% 1.3-Diphenyl-pyrazol-carbonsäure-(4)-äthylester (30), also das Ergebnis einer Wasserstoff-Abgabe. Ähnliches gilt für die Reaktion mit Benzalaceton, die 55% 31 lieferte, identisch mit dem Produkt aus Phenyl-acetyl-acetylen und 14).

Einfache und polycyclische Sydnone reagieren mit *Benzochinon* nach *Hammick* und *Voaden*¹³⁾ unter Bildung von Pyrazolo-chinonen; der Wasserstoff wird dabei vom überschüssigen Chinon übernommen. Dies war das erste Beispiel einer Cycloaddition an Sydnone.

Dibenzoylmethan in siedendem Xylol scheint mit 1 in der Enolform zu reagieren. Das Produkt der Wasser-Abspaltung, 1.3-Diphenyl-4-benzoyl-pyrazol (32), faßte man allerdings nur zu 11%. Kürzlich wurde gezeigt, daß sich die Sydnon-Addukte der Vinyläther unter Alkohol-Eliminierung aromatisieren ¹⁴⁾.

Recht merkwürdig ist die Abspaltung, die das Primäraddukt aus *trans-Dibenzoyl-äthylen* und 1 erleidet. Wir erhielten 1-Phenyl-4-benzoyl-äthylen (34) in 75 proz. Ausbeute. Formal hat 33 Benzaldehyd verloren; wir konnten aber weder den Aldehyd noch Kohlenoxid als Reaktionsprodukt nachweisen.

¹²⁾ R. Seifert, J. prakt. Chem. [2] 31, 462 (1885). Nach V. Auger, C. R. hebd. Séances Acad. Sci. 139, 798 (1904), ist die Zersetzung am Sdp. 173° noch langsam.

¹³⁾ D. L. Hammick und D. J. Voaden, Chem. and Ind. 1956, 739; J. chem. Soc. [London] 1965, 5871.

¹⁴⁾ V. F. Vasil'eva und V. G. Yashunskii, J. gen. Chem. USSR 34, 2059 (1964); Engl. Transl. (Consult. Bureau, New York) 34, 2072 (1964).

$$\begin{array}{c} H \quad COC_6H_5 \\ C_6H_5-N \quad H \quad COC_6H_5 \\ H \quad H \end{array}$$

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für Förderung mit Sachbeihilfen. Die Mikroanalysen wurden von Herrn H. Schulz und Frau M. Schwarz, München, ausgeführt.

Beschreibung der Versuche

Reaktionen mit Acrylnitril

1-Phenyl-pyrazol (5): 1.62 g (10.0 mMol) N-Phenyl-sydnon (1) wurden mit 10 ccm Acryl-nitril unter Zusatz von 0.2 g Hydrochinon 20 Stdn. unter Rückfluß gekocht, wobei CO_2 und Blausäure entwichen. Bei 115-120° (Bad)/11 Torr gingen 1.15 g (80%) 5 als blaßgelbes Ölüber, IR-identisch mit einem Präparat aus 1 und Acetylen⁴⁾.

1-Phenyl-3-cyan-pyrazol (9): 10.0 mMol 1 wurden mit 2.60 g (10.6 mMol) Chloranil in 20 ccm Acrylnitril und 20 ccm Toluol 15 Stdn. auf 80° erwärmt. Nach Einengen i. Vak. nahm man in Äther auf, schüttelte mit 2n NaOH aus und wusch mit Wasser. Bei 135° (Bad)/0.001 Torr destillierten 1.42 g (84% roh) rasch erstarrendes gelbes Öl; Schmp. 70.5 – 71° (Äther/Petroläther).

Zur Nitril-Hydrolyse kochte man 9 mit 40 proz. methanol. Kalilauge 4 Stdn., arbeitete mit verd. Säure und Äther auf, entzog dem Äther die sauren Anteile mit 2n Na₂CO₃ und säuerte die wäßr. Phase an: 40% 1-Phenyl-pyrazol-carbonsäure-(3); aus Wasser verfilzte Nadeln mit Schmp. 143-144°, in Mischprobe und IR identisch mit dem Präparat unabhängiger Synthese⁴).

I-Benzyl-pyrazol (6): Man erhitzte 1.76 g (10.0 mMol) N-Benzyl-sydnon (2) mit 2.12 g (40 mMol) Acrylnitril und etwas Hydrochinon in 20 ccm Xylol 20 Stdn. im 120°-Bad. Die Destillation bei 135–145°/11 Torr lieferte 1.27 g (81%) farbloses Öl, das nach Redestillation analysiert wurde; n_D^{20} 1.5595. IR (Film): Aromat. CH-Wagging 693 sowie sehr breit bei 713, 752/cm.

$$C_{10}H_{10}N_2$$
 (158.2) Ber. C 75.92 H 6.37 N 17.71 Gef. C 75.94 H 6.31 N 17.28

5-Methyl-1-phenyl-pyrazol (14) und 5-Methyl-1-phenyl-4-cyan-pyrazol (15): 1.76 g (10.0 mMol) C-Methyl-N-phenyl-sydnon (10) reagierten mit 1.06 g (20 mMol) Acrylnitril (mit 1% Hydrochinon stabilisiert) bei 24 stdg. Erhitzen in 20 ccm siedendem Xylol unter Abspaltung von CO_2 und Blausäure. Bei $100-120^\circ$ (Bad)/0.001 Torr gingen 1.02 g hellgelbes Öl über; bis 160° /0.001 Torr folgten 0.56 g dunkles Öl, das verworfen wurde. Der erste Anteil ergab bei der Fraktionierung bis 120° (Bad)/12 Torr 705 mg (45%) blaßgelbes Öl, dessen 1R-Spektrum mit dem eines authent. Präparats von 14^{15}) übereinstimmte. IR (Film): aromat. CH-Wagging 694, 708, 763 (sehr breit); starke Banden bei 924, 1016, 1063, 1120, 1209, 1390, 1450, 1502, 1548 und 1601/cm.

¹⁵⁾ K. v. Auwers und H. Broche, Ber. dtsch. chem. Ges. 55, 3880 (1922).

Bis 170° (Bad)/12 Torr folgten 0.30 g (16%) hellgelbes viskoses Öl, das bei Tiefkühlung erstarrte. Aus Äther/Petroläther ($40-60^{\circ}$) 15 in farblosen, bei $46.5-48^{\circ}$ schmelzenden Nadeln. IR (KBr): C=N 2216, aromat. CH-Wagging 689, 702, 761; weitere starke Banden bei 956, 1401, 1500, 1552, 1596/cm.

C₁₁H₉N₃ (183.2) Ber. C 72.11 H 4.95 N 22.94 Gef. C 71.59 H 5.00 N 22.53

Die Nitril-Verseifung mit methanol. Kalilauge führte in 94 proz. Ausb. zu 5-Methyl-1-phenyl-pyrazol-carbonsäure-(4), Schmp. 70-71°, durch Misch-Schmp. und IR-Vergleich mit authent. Material 16) identifiziert.

5-Methyl-1-phenyl-3-cyan-pyrazol (13) und 5-Methyl-1-phenyl-4-cyan-pyrazol (15): 20.0 mMol 10 und 20.0 mMol Chloranil kochte man in 15 ccm Acrylnitril und 30 ccm Toluol 2 Stdn. rückfließend, wobei 19.5 mMol Gas austraten. Die eingeengte Reaktionslösung wurde mit 50 ccm Äther versetzt, mit 2n NaOH ausgeschüttelt, gewaschen und eingedampft. Bei $180-190^{\circ}$ (Bad)/11 Torr gingen 1.53 g (42%) hellgelbes Öl über.

C₁₁H₉N₃ (183.2) Ber. C 72.11 H 4.95 N 22.94 Gef. C 71.73 H 5.11 N 22.96

Die gaschromatograph. Analyse erfolgte an einer 3-m-Säule Siliconöl XE-60 bei 230° mit 2.0 at H₂. Die Retentionszeiten von 13 und 15 betrugen 21.2 bzw. 14.8 Min.; die von 13 stimmte mit der eines authent. Präparats überein. Das Flächenverhältnis betrug 10:37.

Versuche mit Methacrylnitril und Crotonitril

3-Methyl-1-phenyl-pyrazol (17): 10.0 mMol 1 und 150 mg Hydrochinon erhitzte man in 15 ccm Methacrylnitril 50 Stdn. im 100° -Bad; CO_2 und Blausäure-Entwicklung. Das bei 140° (Bad)/11 Torr übergehende blaßgelbe Öl (1.53 g) kristallisierte im Kühlschrank durch. Ein Teil des Destillats wurde aus Petroläther (40–60°) unter Zusatz von Aluminiumoxid umgelöst zu langen farblosen Nadeln, Schmp. $35-36^\circ$ (Lit. 15): 37°). IR (KBr): Aromat. CH-Wagging 683, 698, 755/cm.

$$C_{10}H_{10}N_2$$
 (158.2) Ber. N 17.71 Gef. N 17.55

Die Gehaltsbestimmung des Rohdestillats erfolgte mittels quantitat. IR-Analyse: 3 proz. Lösung in CCl₄, 0.2-mm-Fixküvette mit Lösungsmittelkompensation im zweiten Strahlengang des Perkin-Elmer-Infrarotspektrophotometers; Meßbanden bei 900, 944 und 1040/cm. Der Extinktionsvergleich mit Lösungen der Reinsubstanz zeigte 99 % 17 im Rohdestillat an, was 96 % Ausb. entspricht.

Oxydation von 17: 250 mg wurden mit 600 mg Kaliumpermanganat in 10 ccm 50 proz. wäßr Pyridin 2 Stdn. bei 100° behandelt. Ansäuern und Reduktion des Mangandioxids mit Natriumhydrogensulfit erbrachte 93 mg (31%) 1-Phenyl-pyrazol-carbonsäure-(3) in farblosen Nadeln mit Schmp. 144.5—145.5° (Lit.4): 145—146°).

3.5-Dimethyl-1-phenyl-pyrazol (18): Man kochte die gelbbraune Lösung aus 10.0 mMol 10 und 15 ccm Methacrylnitril (stabilisiert mit Hydrochinon) 20 Stdn., engte unter 11 Torr cin und destillierte bei $90-100^{\circ}$ (Bad)/0.1 Torr 1.52 g (88%) blaßgelbes Öl, IR-identisch mit einem aus α -Acetyl-acetessigester und Phenylhydrazin bereiteten Präparat ¹⁷⁾. IR (Film): Aromat. CH-Wagging 682, 698, 758, 783/cm.

 $C_{11}H_{12}N_2$ (172.2) Ber. C 76.71 H 7.02 N 16.27 Gef. C 76.38 H 7.10 N 15.89

¹⁶⁾ L. Claisen, C. Niegemann und F. Thomas, Liebigs Ann. Chem. 295, 301 (1897).

¹⁷⁾ L. Knorr, Ber. dtsch. chem. Ges. 20, 1096 (1887).

4-Methyl-1-phenyl-pyrazol (19) und 3-Methyl-1-phenyl-4-cyan-pyrazol (21): 70 stdg. Einwirkung von 20.0 mMol 1 auf 5.0 ccm (61 mMol) Crotonitril in 10 ccm siedendem Xylol gab eine hellbraune Lösung: Bei $90-150^{\circ}(Bad)/0.01$ Torr gingen 2.64 g blaßgelbes, teilweise kristallisierendes Öl über. Aus Methanol 620 mg des Nitrils 21 in farblosen Nadeln mit Schmp. $93-95^{\circ}$. IR (KBr): $C\equiv N$ 2240/cm.

 $C_{11}H_9N_3$ (183.2) Ber. C 72.11 H 4.95 N 22.94 Gef. C 72.63 H 5.21 N 23.21

Den Mutterlaugen-Rückstand kochte man zur Verseifung von restlichem 21 mit 30 proz. methanol. Kalilauge und arbeitete mit Wasser/Äther auf. Der bei $140^{\circ}/11$ Torr destillierte Neutralanteil kristallisierte aus tiefgekühltem Petroläther ($40-60^{\circ}$): Farbloses 19, Schmp. $41.5-42.5^{\circ}$.

C₁₀H₁₀N₂ (158.2) Ber. C 75.92 H 6.37 N 17.71 Gef. C 75.85 H 6.23 N 17.93

Quantitat. IR-Analyse von 19 und 21: Das bei 130-220° (Bad)/11 Torr destillierte ölige Produkt (1.43 g) eines Versuchs mit 10.0 mMol 1 wurde in Tetrachloräthylen-Lösung mit den Extinktionen künstlicher Mischungen verglichen. Meßbanden: 1016 und 1043/cm für 19 und 2240/cm für 21. Das Rohdestillat erwies sich als 92 proz.; die auf 1 bezogenen Ausbb. betrugen 44% 19 und 33% 21.

Oxydation von 19: Reaktion mit $KMnO_4$ in wäßr. Pyridin und Aufarbeitung wie oben lieferte 47% *I-Phenyl-pyrazol-carbonsäure-(4)* (20), farblose Nadeln mit Schmp. $218-220^{\circ}$ (Lit.: $221-222^{\circ}18$), $218-220^{\circ}4$).

Überführung von 21 in 17: Die Hydrolyse von 170 mg Nitril 21 mit 30 proz. methanol. Kalilauge ergab 176 mg (94%) 3-Methyl-I-phenyl-pyrazol-carbonsäure-(4) (22), Schmp. 193-195°. Die trockene Destillation der Mischung mit Bariumhydroxid unter 11 Torr brachte 72% 3-Methyl-I-phenyl-pyrazol, IR-identisch mit 17.

Reaktionen mit Fumarsäureester

1-Phenyl-pyrazol-carbonsäure-(4)-methylester (26): 20.0 mMol 1 erhitzte man mit 11.6 g (80 mMol) Fumarsäure-dimethylester in 20 ccm Xylol 51 Stdn. im 110°-Bad. Nach Erkalten wurde vom Dimethylfumarat abgesaugt, die hellbraune Lösung eingeengt und bis 160° (Bad)/11 Torr vom überschüss. Dipolarophil befreit. Bei 110—140° (Bad)/0.01 Torr gingen 2.44 g (60%) blaßgelbes Kristallisat über, Schmp. 123—125°. Aus Methanol farblose Nadeln mit Schmp. 130—131° (Lit.: 128—129° 18), 130.4—131° 4)), identisch mit einem aus 1 und Methylpropiolat erhaltenen Präparat⁴⁾.

 $C_{11}H_{10}N_2O_2$ (202.2) Ber. C 65.33 H 4.98 N 13.86 Gef. C 65.28 H 5.16 N 13.91

In einem Versuch mit 5.0 mMol 1 und 10.5 mMol *Dimethylfumarat* in 10 ccm Mesitylen (20 Stdn. 150°) wurde die Gasausbeute bestimmt: 4.27 mMol CO_2 , kein CO.

Zum Nachweis des *Methylformiats* erhitzte man 20 mMol 1 mit 35 mMol *Dimethylfumarat* 18 Stdn. in 10 ccm siedendem CCl₄. Das freigesetzte Gas wurde durch 2 ccm eiskaltes CCl₄ geleitet. Das IR-Spektrum dieser Lösung bestätigte das Auftreten von *Ameisensäure-methylester* (IR-Vergleich).

Die *Hydrolyse* des Esters **26** mit methanol. Kalilauge gab 98% **20** mit Schmp. und Misch-Schmp. 219—220°.

In einem weiteren Versuch kochte man 10.0 mMol 1 mit 80 mMol Maleinsäure-dimethylester 5 Stdn. in 10 ccm Xylol. Die Aufarbeitung wie oben erbrachte 35% 26.

¹⁸⁾ W. Wislicenus und W. Bindemann, Liebigs Ann. Chem. 316, 18 (1901).

1-Phenyl-pyrazol-dicarbonsäure-(3.4)-dimethylester (25): Beim 2stdg. Rückflußkochen von 10.0 mMol 1, 69 mMol Fumarsäure-dimethylester und 10.0 mMol Chloranil in 30 ccm Xylol wurden 9.5 mMol CO_2 freigesetzt. Man verdünnte mit Äther, schüttelte mit 2n NaOH aus, bis der Extrakt nicht mehr violett gefärbt war, und wusch mit Wasser. Bei $170-180^{\circ}$ (Bad)/0.01 Torr gingen 1.06 g 25 über, Schmp. $92-96^{\circ}$. Aus Methanol farblose Quadern mit Schmp. $99-101^{\circ}$ (Lit.: $97-98^{\circ}$ 199, $99-100^{\circ}$ 49), in Mischprobe und IR identisch mit einem authent. Präparat49.

1-Phenyl-pyrazol-carbonsäure-(4)-phenylester (27): 10.0 mMol 1 und 2.68 g Fumarsäure-diphenylester 20) (10.0 mMol) kochte man 24 Stdn. in 10 ccm Xylol. Aus der i. Vak. eingeengten Lösung destillierten bis 140° (Bad)/11 Torr 673 mg (72%) Phenol; Identifizierung durch Eisen(III)-chlorid-Reaktion und IR-Vergleich. Bei 150-200° (Bad)/0.01 Torr folgte ein hellgelbes Öl, das aus Methanol 642 mg (24%) 27 in farblosen Nadeln mit Schmp. 111-112° gab.

$$C_{16}H_{12}N_2O_2$$
 (264.3) Ber. C 72.71 H 4.58 Gef. C 72.74 H 4.73

Hydrolyse von 27: 100 mg wurden mit methanol. Kalilauge verseift; 70 mg 1-Phenylpyrazol-carbonsäure-(4) (20) mit Schmp. 219 – 220°.

Gasanalyse: Aus 5.0 mMol 1 und 7.5 mMol Fumarsäure-diphenylester in 10 ccm p-Cymol bei 160° wurden 9.83 mMol Gas freigesetzt, die im Orsat-Kleine-Apparat analysiert wurden: 4.92 mMol (98%) Kohlendioxid und 4.87 mMol (97%) Kohlenoxid.

3-Methyl-1-phenyl-pyrazol-carbonsäure-(4)-methylester (29): 10.0 mMol 1 erhitzte man in 10.0 ccm (71 mMol) Mesaconsäure-dimethylester 6 Stdn. auf 170–180°. Man engte bis 90° (Bad)/0.3 Torr ein und destillierte bei 120–150° (Bad)/0.007 Torr 1.11 g (51%) blaßgelbes Öl, das zu bei 68–70° schmelzenden Nadeln erstarrte; Schmp. 72–73° (Methanol). IR (KBr): C=O 1708; aromat. CH-Wagging 683, 747, 770; starke Banden bei 1107, 1270 und 1562/cm.

C₁₂H₁₂N₂O₂ (216.2) Ber. C 66.65 H 5.59 N 12.96 Gef. C 66.65 H 5.54 N 12.67

Mit siedender methanol. Natronlauge wurde der Ester 29 verseift: 98% 3-Methyl-I-phenyl-pyrazol-carbonsäure-(4) (22), Schmp. 192—194°; identisch mit dem oben aus 21 erhaltenen Präparat. IR (KBr): OH 2620, C=O 1690, C-O 1285; aromat. CH-Wagging 687, 720 und Doppelbande 763, 767/cm. Die trockene Destillation des Bariumsalzes gab 17.

Umsetzungen mit Zimtsäureester und α.β-ungesättigten Ketonen

1.3-Diphenyl-pyrazol-carbonsäure-(4)-äthylester (30): Man erhitzte 10.0 mMol 1 in 10 ccm Zimtsäure-äthylester 24 Stdn. im 160°-Bad. Überschüss. Dipolarophil wurde i. Vak. entfernt; 2.06 g teilweise kristallisierendes Öl gingen bei 165–215° (Bad)/0.02 Torr über. Aus Methanol kamen farblose Nadeln mit Schmp. 93.5–94.5° (Lit.4): 93–94°), in Schmp. und IR identisch mit einem Präparat aus 1 und Phenylpropiolsäure-äthylester. Die Gehaltsbestimmung des Rohdestillats wurde durch IR-Analyse vorgenommen; 1.4- bis 3-proz. Lösung in C₂Cl₄, Meßbanden bei 1278 und 1450/cm; Ausb. 28%. IR (KBr): C=O 1722, aromat. CH-Wagging 684, 695, 757/cm.

 $C_{18}H_{16}N_2O_2$ (292.3) Ber. C 73.95 H 5.52 N 9.58 Gef. C 73.74 H 4.92 N 9.62

1.3-Diphenyl-4-acetyl-pyrazol (31): Aus 10.0 mMol 1 und 5.0 g (34 mMol) Benzalaceton wurden in 48 Stdn. bei $150-160^{\circ}$ 9.8 mMol CO_2 entbunden. Aus dem bei $160-210^{\circ}$ (Bad)/0.001 Torr erhaltenen zähen Destillat kristallisierten beim Anreiben mit Methanol 1.45 g

¹⁹⁾ L. Balbiano, Gazz. chim. ital. 28, 1, 382 (1898).

²⁰⁾ R. Anschütz und Q. Wirtz, Ber. dtsch. chem. Ges. 18, 1947 (1885).

(55% roh), Schmp. $67-82^\circ$. Wiederholtes Umlösen aus Methanol gab farblose Nadeln mit Schmp. $103-104.5^\circ$ (Lit.⁴⁾: $102.5-104^\circ$), in Mischprobe und IR mit authent. Material identisch.

1.3-Diphenyl-4-benzoyl-pyrazol (32): Nach 48 stdg. Erhitzen von 10.0 mMol 1 und 4.48 g (20 mMol) Dibenzoylmethan in 10 ccm siedendem Xylol erreichte die CO₂-Ausb. 98%. Überschüss. Dipolarophil wurde bis 190° (Bad)/0.01 Torr abgezogen, der dunkelbraune, harzige Rückstand in Methanol aufgenommen: 366 mg (11%) farblose Nadeln, Schmp. 140–141° (Aceton/Methanol). IR-Vergleich und Misch-Schmp. bewiesen die Identität mit dem aus Phenyl-benzoyl-acetylen erhaltenen Präparat⁴).

 $C_{22}H_{16}N_2O$ (324.4) Ber. C 81.46 H 4.97 N 8.64 Gef. C 81.66 H 5.31 N 8.70

1-Phenyl-4-benzoyl-pyrazol (34): Man erhitzte 10.0 mMol 1 und 4.0 g (16.9 mMol) trans-Dibenzoyläthylen in 10 ccm Mesitylen 90 Min. auf 150° und entfernte unter 11 Torr das Solvens. Das bei 180–190°/0.01 Torr erhaltene kristalline Destillat wurde aus Methanol umgelöst zu 1.86 g (75%) farblosen Nadeln, Schmp. 123–124.5° (Lit. 21): 122–123°). IR (KBr): C=O 1638; aromat. CH-Wagging 682, 690, 695, 741, 753/cm.

C₁₆H₁₂N₂O (248.3) Ber. C 77.40 H 4.87 N 11.28 Gef. C 77.70 H 5.14 N 11.32

Im abdestillierten Solvens ließ sich mit 2.4-Dinitro-phenylhydrazin kein Benzaldehyd nachweisen; entsprechendes gilt für einen Versuch mit Hydrochinon-Zusatz. Ein weiterer Versuch zeigte die Abwesenheit von Kohlenoxid: Aus 5.00 mMol 1 wurden 4.53 mMol Gas entwickelt, die sich als reines CO_2 erwiesen.

[408/67]

²¹⁾ L. Balbiano, Gazz. chim. ital. 19, 134 (1889).